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Abstract

This report proposes an approach to automatically
detect static vehicles in an outdoor parking space
using depth. The relevant 3D information is
generated from a Digital Surface Model (DSM),
which is a result of a novel and existing
technique to solve camera pose estimation and dense
reconstruction simultaneously. Validation using local
2D features, based on existing methods, is then
done to ensure better detection rates. Further,
performance of the detection system is evaluated by
changing the internal parameterization of 3D model
generation and the dependence is analyzed.

1 Introduction

Vehicle detection and tracking is one of the most
sought-after research topics in the realm of computer vision
due to the huge diversity in applications ranging from
surveillance and security to traffic flow analysis and studies.
Many interesting approaches have been proposed resulting in
great advancements in this area. Vehicle detection in parking
spaces is one such topic the current work addresses.

Monitoring parking spaces has a great importance in both
civilian and surveillance applications. Using aerial imagery to
accomplish this task is even more challenging due to the small
angular size of vehicles based on the height of the camera. A
passenger car has a typical size of around 30x10 pixels in the
current setting. However, the advantages of using such images
are immense and make it interesting to pursue the idea. One
of the most crucial advantage being the wide area of viewing
- particularly in tracking for maintaining a clear sight of the
target. This report proposes, using existing works ([9], [4]), a
simple detection technique to identify and detect vehicles in
a parking space along with relevant analysis. A sequence of
aerial images taken from an intrinsically calibrated camera
is the input to the pipeline. Static vehicles in outdoor
parking spaces are identified through combination of 3D and
2D features with the help of an intermediate Digital Surface
Model (DSM) of the urban landscape.

The report is organized as follows. Section 2 briefly
explains the related work that forms the core the present work
builds around. Section 3 outlines the entire pipeline of the
current work. Section 4 is mainly analysis of the dependence
of system performance on internal parameterization of 3D
model generation. We present conclusions and scope for
improvement in the final section.

Figure 1: Flowchart for Simultaneous Camera Pose
Estimation and Dense Depth Reconstruction

2 Related Work

We briefly go through the underlying framework around
which the present work is based on as relevant literature
can be referred to for detailed description. Primarily, the
following works form the basis :

2.1 Coupled Camera Pose Estimation and
Dense Reconstruction

There are mainly two problems that need to be addressed -
camera pose estimation, which involves estimation of position
and orientation of the camera (6D); and dense reconstruction
i.e. establishing a dense depth map. Many solutions were
proposed that solve these two problems sequentially : solving
the Structure from Motion (SfM) problem using sparse set of
2D matches points followed by multi-view stereo algorithm
for the dense depth map.

However, this work largely differs from previous works
([2], [6] ,[8] ,[3], [5]) by its attempt to solve both the
problems jointly for aerial videos of urban scenes. This
coupled approach seemingly performs better with higher
efficiency. As seen from Fig. 1, a 3D model is updated
after estimating the camera pose using a new frame as it
arrives. Unlike traditional SfM solely based on matched
2D points, Perspective-n-Point (PnP) method dependent on
3D information back-projected from the model is used to
estimate the camera pose. Dense point correspondences are
then estimated by optical flow using stabilized frames. Such
stabilization makes the correspondences robust even for large
baselines. Though the camera estimation makes do with
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Figure 2: Wire Frame Model for Vehicle Detection

global optimization, estimated poses are as accurate as with
global Bundle Adjustment making this method efficient and
accurate. A novel representation for urban scenes has also
been proposed and used in this work. A Digital Surface Model
(DMS) composed of two elements : ground/roofs and building
side-walls is maintained and updated during the process.

2.2 Integrating Global and Local Features
for Vehicle Detection

Aerial images of urban areas have an apparent closeness
of different objects that causes strong influence on each
other. For example, partial occlusion of cars due to trees,
shadows due to buildings, specularity on cars due to glasses
or varnish, etc. A model that completely relies on radiometry
might not be efficient due to such influences that mostly
appear in form of local radiometric disturbances. However,
a model emphasizing a structural description - as an explicit
model - seems much more robust. The performance of the
implicit approach depends mainly on the training data, which
cannot be assured to generalize and capture the changes
in illumination. viewpoint and other influences caused by
neighboring objects correctly. Another advantage offered by
explicit modeling is the focus on fundamental and robust
features of cars facilitating the employment of hierarchy of
levels of detail.

In [4], an explicit model consisting mainly of geometric
features and some radiometric properties is used. A car is
modeled as 3D object by a wire-frame representation. The
model contains substructures like windshield, roof and hood
(Fig. 2). This model is adaptive regarding the the expected
saliency of the edge features which is influenced by vehicle
color, vehicle orientation and view point (position in the
image). Hence, this model is chosen as it offers invariability
to varied number of parameters in detection of vehicles.

3 Proposed Algorithm

The detection approach starts with the Digital Surface
Model(DSM) obtained from [9] as shown in Fig. 3. The
entire pipeline, divided into four stages, is outlined below.

3.1 Generation of Height Map

We begin the detection pipeline with the 3D model of the
urban landscape. The model implicitly has a ground plane
assigned to the urban scene which is identified through
Random Sampling and Consensus (RANSAC) among points
with near-ground heights. Under the assumption that the
ground plane mainly consists of roads and outdoor parking
spaces, we restrict our search to this plane. We back-project

Figure 3: Digital Surface Model(DSM)

Figure 4: Height Map of the Parking Space

the heights from the Digital Surface Model(DSM) onto
the image using the dense set of 2D-3D correspondences
calculated intermediately in [9]. We call the height-projected
image(Fig. 4) a ’height map’ and use it to detect cars from
depth information.

3.2 Detection from Depth

The next stage in the pipeline involves detection of possible
candidates for static cars using the generated height map.
We use a sliding window with a Haar-like feature to score the
current location. Characterization of the window is based on
the following realistic assumptions:

• Choice of Feature
Modeling a car as a rectangle of raised height from
the ground(or equivalently at lower depth than the
immediate surroundings as seen from air), we use a
bordered rectangular feature for detection. A high
scoring match will be expected to have the border
overlapping with the ground near the car while raised
rectangle overlaps with height of the car.

• Size of Window
Since we have the extrinsic parameters of the camera,
the average size of a passenger car in terms of pixels
can be estimated. We use a 20x10 pixels feature with a
border of 5 pixels. We have observed that the exact size
does not affect the detection much as long as the order
is consistent.

• Orientation of Feature
As the focus is on detecting static vehicles in an outdoor
parking space, there are a limited number of directions of
interest along with vehicles are oriented. We assume cars
from the same row are parked in an orderly fashion along
a single direction. However, caution must be applied
to note that there can be different but a small number
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Figure 5: This is some figure side by side

Figure 6: Results of Detection from Depth

of such directions. Taking advantage of this, we orient
the feature in the sliding window and pick the most
consistent direction.

• Location Variation Constraint Based on the
rectangular box model for the car, we impose a local
variation constraint. The standard deviation of the
depth values in the feature is evaluated and is assigned
a negative impact to the overall score. The idea is
to suppress objects like lamp posts, etc. which have
high score from the feature due to larger height. This
constraint enforces more or less constant height within
the feature.

Under the above assumptions, we evaluate score at each
pixel and select the locations of possible positives(Refer to
Fig. 6). The pipeline then proceeds to the next stage for
validation.

3.3 Validation using 2D features

The 3D wire frame model (Refer Fig. 7) is employed for
validation on the possible locations obtained till the present
stage. We project the wire frame on to the image based on
the camera position and viewing angle. However, to keep the
model simple, we do not consider the shadow cast by the car
and restrict ourselves to the geometric model. Calculation of
score is done as illustrated in [4] and low scoring positions are
discarded.

3.4 Enumeration and Localization

This is the final stage of the entire pipeline. After the
validation, we finally count and locate the static vehicles as

Figure 7: Wire Frame Model for Validation

predicted by the proposed approach.

4 Results

To evaluate the system, we use Brown Dataset 1 to build
the Digital Surface Model (DSM) and perform detection and
counting. Though aerial images of any outdoor parking
space can be fed as input to the system, performance metrics
presented in this paper are for Site 3 from the above data.
Identifying that optical flow calculation is the decisive step
in DSM generation, we analyze the influence of internal
parameterization of flow computation on the detection system
in terms of functioning and performance. Primarily, we
focus on three parameters - number of iterations, smoothness
co-efficient and number of warps.

• Number of Iterations
Number of iterations, as in case of any optimization
problem, plays a crucial role in obtaining the solution.
However, its influence on detection looks subtle. Hit rate
slightly improves on increasing the number of iterations.
However, accuracy goes down for large number of
iterations.

• Smoothness Constraint
Regularization is perhaps the most important
consideration in optical flow evaluation. The behavior
of the system is heavily dependent on the smoothness
co-efficient as expected. Low values of smoothness
term lead to noisy depth maps and lower accuracy

1http://vision.lems.brown.edu/project_desc/

Object-Recognition-in-Probabilistic-3D-Scenes
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and hit rates. On the other side, high values tend to
smoothen the height considerably. This results in lose
of information about small height variations as in case
of vehicles. Hence, both hit rate and accuracy go down
drastically for higher values of regularization co-efficient.

• Number of Warps
Coarse-to-fine warping techniques are generally
employed in optical flow calculations based on
experimentation. However, [7] attempts a mathematical
support for the idea. In our experiment, the dependence
of hit rate and accuracy on warping is minimal as they
show slight improvement with increasing number of
warps.

5 Conclusion

In this report, we put forward a simple detection algorithm
to identify static vehicles in an outdoor parking lot.
Importantly, identification is based mainly on 3D information
in the form of height maps obtained from Digital Surface
Model (DSM) of the urban landscape. We also make use
of available 2D information for validation and present the
final detection results. Subsequently, relationship between
the pipeline and internal parameterization of landscape model
generation is analyzed and presented. Identifying of empty
parking places would be an interesting problem to pursue
and solve. Incorporating better features for detection and
validation can be explored for better performance of the
overall system.
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