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Abstract

How do we sample efficiently from the Bayesian
Lasso in a high dimensional problem with a
large dataset? Hybrid Monte Carlo (HMC)
has grown in popularity because it enables
more efficient exploration of the state space in
high-dimensional problems. Also, Stochastic
Gradient-HMC has been proposed to enable ap-
plication of HMC to large datasets. However,
these methods apply to sampling from smooth
energy functions only. We propose two ways
of dealing with this: (1) SPG-HMC: Stochas-
tic Proximal Gradient-HMC, to enable sam-
pling from non-smooth energy functions with-
out losing the benefits of stochasticity, and (2)
Smoothing-SG-HMC. Further, we analyze its
properties theoretically and empirically.

1. Introduction

Markov Chain Monte Carlo (MCMC) methods are popular
to sample complex distributions, particularly for Bayesian
posterior sampling. A major advantage of this method is to
asymptotically guarantee samples from the true posterior
distribution. However, with the advent of Big Data and
ever increasing scale, datasets with billions of points have
become commonplace, and drawing even a single sample
can become a costly affair.

There is another class of MCMC methods that add noise to
optimization rules: MALA (Robert & Casella, 2005) and
Hybrid Monte Carlo (HMC) (Neal, 2010). These methods
simulate physical systems with Langevin or Hamiltonian
Dynamics respectively to generate samples. MH correction
after each simulated step ensures that samples are from the
target distribution. Important theoretical properties of the
methods, known from Statistical Physics literature guaran-
tee effective MCMC sampling.
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Recent work (Welling & Teh, 2011b), (Chen et al., 2014)
has put together these classic MCMC techniques with
Stochastic Optimization techniques. These methods, being
stochastic, touch only a portion of the dataset each itera-
tion, and are super-fast. Further, such methods are more
amenable to parallelization and scale more elegantly with
the dimension of the data, where Gibbs sampling methods
may not be tractable.

However, HMC cannot handle problems where we have to
sample from non-differentiable energy functions such as
the [; or the [,,. There sparsity promoting norms appear as
Laplacian or Generalized Gaussian priors in the Bayesian
context. A typical example is the Bayesian Lasso (Park &
Casella, 2005). Standard Gibbs sampling approaches ex-
press the double exponential prior as a scale mixture of
normals. However, even the Gibbs Sampling approach
has to touch each datapoint to generate a sample. Non-
differentiable energy sampling is also widely used in sparse
signal and image recovery, as in (Lotfi Chaari & Batatia,
2015).

Further, there is work on Riemann Manifold Langevin and
Hamiltonian dynamics (Girolami et al.), where the energy
function is defined on a Riemann Manifold or when the
high-dimensional target exhibits strong correlations. The
method also takes advantage of the local structure as cap-
tured by the Riemannian geometry.

In this paper, we shall deal with non-smooth energy func-
tions, such the Baysian Lasso. We explore two approaches.
The proximal gradient algorithm (Eckstein & Bertsekas,
1992) is a natural first choice. For the [; norm which is
also the most commonly encountered non-smooth term, the
proximity operator has a closed from. Not surprisingly, this
approach is also widely used for lasso regression, and for
other variants such as the elastic net and the group lasso,
among others. Further, constrained optimization problems
can be posed as unconstrained optimization problems to the
proximal operator. Secondly, we look at smooth relaxations
of non-smooth functions as a general means of dealing with
non-differentiability, that can also be used in conjunction
with the proximal apporach for complicated functions.
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2. Related Work

2.1. Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) is a class of sampling al-
gorithms inspired by the Hamiltonian dynamics. This type
of dynamics was first formulated in (Alder & Wainwright,
1959) for the dynamics of the molecules and was later com-
bined with MCMC to solve lattice field theory simulations
(Duane et al., 1987a).

There is an intuitive physical interpretation for the pro-
cess of sampling through HMC, due to its derivation from
Hamiltonian dynamics used to model physical systems.
The motion of a particle can be completely characterized
by its current position (¢) and its current momentum (p). If
a particle of mass m, at a position ¢ is moving with a ve-
locity v = ¢ = 8—‘5, its kinetic energy K can be expressed
as K(v) = 1mv? or equivalently K (p) = 5-p?. We will
denote the potential energy of the particle with U(g). Ob-
serve that the kinetic energy of the particle is a function
of momentum alone while the potential energy is that of
position. The Hamiltonian of the system is the quantity

that equals the sum of the potential and kinetic energy, i.e.,
H(g,p) = Ulg) + K(p).

The dynamics of the particle can then be specified by a set
of coupled differential equations, Eq. 1 and Eq. 2.
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In order to implement Hamiltonian equations, we can make
use of any numerical integration. Leap frog integrator is
preferred (Neal, 2010) as it handles the discretization er-
rors better than simpler methods like Euler integration. The
integrator equations (at time ¢ with a step of €) are shown
below:

_ € OU (q1)
Ptte/2 = Pt 2 g (3a)
8K(pt+e/2)
Qt+e = qt + € — (3b)
t+ t (9])
Opite
— g + e Lire/? (c)
dp
€ OU (Gite/2)
Prie = Driejs — 575(; /2 (3d)

The above leap frog integrator is used n times to evolve
the system from time ¢ to time ¢ 4 ne. It is interesting
to note at this junction that there exists a special case of
Hamiltonian dynamics, known as the Langevin Dynamics
where the leap frog integrator is run only once, i.e. n = 1,
to get the updated values of (¢, p). Manipulating the above

equations, we arrive at :

€ oU (q:)

Qt+e = Gt + €Pt — 5 9

“4)

Having understood the physical relevance, HMC now can
be used to obtain samples from a distribution. For this,
imagine the position variable ¢ to be the desired quantity
that we wish to sample (Eg. § € R, from a certain pos-
terior) and introduce an auxiliary variable to represent the
momentum p. The distribution from which the samples are
to be taken need to be expressed as the energy function, for
the Hamiltonian. Ignoring the temperature, the posterior
distribution can be expressed in terms of canonical distri-
bution, as follows:

1
P(q,p) = - exp(=U(q)) exp(~ K (p)) (5)
The potential energy is defined as the negative log posterior
likelihood:

Ul(q) = —log(m(q)L(q|D)) (6)

where we impose a prior on ¢ through 7(q) and L(¢|D) is
the likelihood given the data. We use a zero-mean Gaus-
sian distribution on the auxiliary variable p to replicate the
quadratic nature of ‘momentum’ variable. Further, a mass
matrix M can also be introduced which also acts as a pre-
conditioning matrix (Welling & Teh, 2011a), (Girolami &
Calderhead, 2011). Random samples for the momentum
variable p are drawn at each instant and a Metropolis Hast-
ings update is performed based on the probability distribu-
tion.

2 n
€
0y =0,_1 + éM‘l{; Vo log P(z;|0;—1)+

Volog P(0;-1)} +eM 'py (7)

The Hamiltonian has to satisfy three important properties,
which are crucial for the samples to come from the true
distribution. They are:

1. Reversibility

Hamiltonian dynamics is reversible i.e. the transition
from state (q¢,p:) to (qe+7, Pe4T) is reversible and
can be obtained by reversing the time derivatives in
the corresponding update equations. The inverse can
also be obtained by negating the momentum, p;, ap-
plying the same forward transition and negating the
momentum again.
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2. Conservation of Hamiltonian
Ideally, the Hamiltonian must remain invariant in or-
der to be sampling from the true distribution. Dis-
cretization errors make H(q,p) only approximately
invariant. Mathematically,

d
dt 2 {dt Jq; i

i=1

dp; OH | _

©))

3. Volume Preservation

Hamiltonian dynamics propose a transition of the cur-
rent state such that the volume in the (g, p) space is
preserved. This is an important property, failing which
a Jacobian has to be evaluated to compensate for the
volume changes the transition causes. A way to state
this properties is by equating the the divergence of
vector field to be zero (Eq. 10).

ia@+adpi_zd: 0 OH 9 OH

P dq; dt ~ Op; dt | P dq; Op;  Op; Og;
N[ 0PH or?
B P 0q;0p; Opi0q;
=0 (10)

2.2. Stochastic Gradient HMC

The potential energy U(q) (from Eq. 6) involves calculat-
ing the log-likelihood of the data, given the current value of
the parameter 6, at time ¢. Therefore, update equation for p
(Eq. 2) has the gradient of U(q). When dealing with large
dataset which is not uncommon in Bayesian inference, this
often becomes a bottle-neck or perhaps even intractable
as gradient is computed at every leap-frog step. In order
to mitigate this huge computational burden, the family of
stochastic methods introduced in (Robbins & Monro, 1951)
are used. This results in the Stochastic Gradient Hamilto-
nian Monte Carlo (SG-HMC), where the gradient evaluated
over a small batch of data is taken as an estimate of the total
gradient of U(q).

However, naively replacing the gradient with the stochas-
tic variant will not yield the correct Hamiltonian dynamics
(Chen et al., 2014) as one of the fundamental properties,
the conservation of Hamiltonian, gets violated. The au-
thors have added an additional ‘friction’ term in order to
account for this disparity. Also, the step size for the update
rule can be made small enough to get rid of the Metropolis
Hastings rejection step at the end of leap frog updates at
every iteration. The update equations transform to:

do = M~ pe
dp = —=VU(#)e — BM ™ pe + N(0, 2Be¢)

(1)
12)

Here, BM 1 pe is the friction term used to account for the
lose of conservation of Hamiltonian.

|

2.3. Proximal Gradients and Proximal Gradient HMC

The proximal gradient method is based on the proximal op-
erator (Eckstein & Bertsekas, 1992), prox : R? — R?
defined as:

. 1
prox, () = argmin | f(z) + 5y o — 23| (13)

When A is zero, prox,, returns the same point itself.
When A is infinity, prox, ; returns the global minimizer of
the function. It can be viewed as some returning a nearby
point that reduces the function value. This compares di-
rectly to the gradient, which gives the direction of maxi-
mum increase of the function. This leads immediately to
the Proximal Point Algorithm, which performs the follow-
ing iterations to minimize f:

2 = profo(x(t))

Under the mind assumption that f has a minimizer, this
algorithm converges because of the fixed point property of
prox, which states that =, minimizes f iff prox, f(sr:*) =
x4 (Parikh & Boyd, 2014).

For convex, differentiable f, the Proximal Point Algorithm
is very similar to gradient descent. In fact, both of them
are related to gradient flow. Gradient flow is the differen-
tial equation %x(t) = Vf(x(t)), the equilibrium point of
which is the minimizer of f. Gradient descent is the ex-
plicit Euler discretization of this continuous time process,
where as, the proximal point algorithm is the implicit Euler
discretization, which is know to have better stability prop-
erties but computationally more expensive to solve an im-
plicit equation. See (Parikh & Boyd, 2014) for more de-
tails.

Consider the minimization problem of the form:

m‘/gn f(@) + h(zx)

where f, h are closed convex functions and f is differen-
tiable. h can be an extended value representation to encode
constraints. The Proximal Gradient Algorithm performs it-
erations of the form:

2 = prox,.;, (29 — X'V f(z®))

One may wonder how solving an optimization problem in-
side another will make it any easier to solve the original
problem. The real power to proximal gradient algorithm
lies in that fact that the prox operator has a simple, per-
haps closed form for some functions. It may be seen that
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for the [; norm, the proximal operation is soft-threshold the
input at level A,

Ti— A T; > A
(proxy |, ()i =Sz + A @ <=\ (14)
0 otherwise

This makes the proximal gradient algorithm popular for
solving the lasso or its numerous extensions (Parikh &
Boyd, 2014). Further, solving the implicit Euler update,
as discussed earlier, now comes free of cost.

Constrained optimization problems may be expressed us-
ing the indicator function for a set C' as h(z) = I¢(x)
which is 0 if x € C and 40 otherwise. It can also be seen
that prox is now the Euclidean projection:

prox; (z) = argmin ||z — z||? (15)
zeC

PROXIMAL LANGEVIN MONTE CARLO

Authors of (Pereyra, 2013) introduced Proximal Langevin
Dynamics: application of the proximal operator to
Langevin Dynamics. They talk about two techniques: P-
ULA, and Proximal MALA, with and without the MH cor-
rection step, respectively. Essentially, they use the relation:
prox, ¢(r) = x — AV f(z), to obtain (to sample from 7:

«_ (-t £
0" = (1 2)\)9+ 2)\prox)\log7r(6) +77 (16)

where n) ~ N (0, el)

2.4. Bayesian Lasso

Introduced in (Park & Casella, 2005), the Bayesian Lasso
considers the sparcity inducing /; penalty on the parameters
as a double exponential prior on the parameters.

A
W(Hj\az) = %exp(—)\|9j|/o) a7

Inference is done using Gibbs sampling by using the fol-
lowing trick:

a <1 9 a? 5
—exp(—az) = exp(—z°/2s)— exp(—a“s/2)ds
2 0 27s 2

(18)

Further, Bayesian credible intervals are derived. We aim to
do the same, but without visiting the entire dataset for each
sample.

3. Method
3.1. Proximal HMC

We propose Stochastic Proximal Gradient HMC for sam-
pling from non-smooth densities without ever touching the
whole dataset in each iteration. But first, let us derive HMC
using prox. For this, we define the gradient mapping. This
quantity has been used implicitly in several papers in the
past. See, for instance, (Parikh & Boyd, 2014).

Definition 1. For a function h and a step size 1), define the
gradient mapping of f to be:

gn(h)(z) = (z — prox,;, (z))/1 (19)
Further, if f is differentiable,

gy (f +h)(z) = (z — prox,,(x —nV f(z)))/n (20)

Note, for a differentiable f that g,(h)(z)
V f(prox;(z)), by definition. Further, for the prox-
imal gradient algorithm, 7 is exactly the same as the
step-length for the first step. From (Parikh & Boyd, 2014),
under appropriate conditions, prox, ;(r) ~ z — AV f(z).
If h is differentiable, g, (f + h)(z) = Vf(z) + Vh(z).

First, for non-smooth Hamiltonian Dynamics, since the dif-
ferential equations change as:

% € —0,H @)
0q OH
(‘7;] =35, = (22)

We propose to solve 21 with the proximal gradient method.
Note that the proximal gradient method is equivalent to tak-
ing an explicit Euler step with the smooth part of the energy
and an implicit Euler step with respect to the non-smooth
term. The resulting leap-frog update equations now look
like:

€

Diyej2 =Dt — 29e/2(U)(Qt) (23a)
OK (piye
Q4e =@ + OB Peresz) at+ 2) (23b)
4
= qt + €Dtre/2 (23¢)
€
Dite = Ditej2 — 595/2<U)(Qt) (23d)

To make this stochastic, the gradient of the likelihood must
be stochastic. But as demonstrated in (Chen et al., 2014), a
noise is added implicitly by considering a stochastic gradi-
ent. From the central limit theorem, the noise is approx-
imately Gaussian. In order to make sure that the noise
doesn’t change the estimate by much, a “friction” term is
required. We use the same trick to make the stochastic vari-
ant of Proximal HMC to work.
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Algorithm 1 Stochastic Proximal HMC

input starting position #(°) and step size e
fort=1,2,...do
Resample Momentum
p(t) ~ N(Oa M)
Leap-frog Steps
(60, po) ~ (8, T(t))
Z ~ N(0,2(C — B)e)
Po < po — 59e/2(U)(0g) —eCM 100 + Z
for: =1..mdo
0; < 0;1 +eM'p;_4
Z ~ N(0,2(C — B)e/2)
Pi < Di—1 — €§€(U)(91) — SCM_lei +Z
end for
No MH Correction
O+ 0,
end for

3.2. Smoothing HMC

We look at a different approach of dealing with non-smooth
functions by approximating them with smooth functions.
Further, we can make them arbitrarily close to each other,
as we shall see. We consider this for the running example of
the Bayesian Lasso, and similar procedures can be followed
for any other convex non-smooth functions. We remark that
evaluation of the estimator for other arbitrary norms may
not be as simple.

First, start with the variational form of the /; norm.

R(z) = A|z|x = I|r1a>il)\y T (24)

lylloo

Now, we regularize this maximization problem to get a
smooth approximation using a parameter y > 0:
5 T

R,(zr) = max Ay

1% 2
r— <y (25)
llylleo <1 3 19ll2

Note that if y = 0, Ru = R. We shall drop the subscript p
when it is not relevant. This approximation is smooth.

Proposition 1. R(m) is a smooth function of x and its gra-
dient is
VER(x) = Ay*(x) (26)

where

y*(z) = argmax(\y" z — ||y||§) (27)

—1<y<1

Proof. Note that the [, constraint is a box constraint —1 <
y < 1. Fix a value of z. Equation 27 gives us the maxi-
mizer(s) y* («) for this value of z. From first principles, we

can see that the set of subgradients, 0, R(z) = {\yly €
A T, K 2

arg Inax71§y§1( Yy r—3 lyll3)}-

From strong concavity of the maximization problem, y* ()

is unique for each x, and so, the set of subgradients is

a sjngleton set. In other words, R is differentiable with
VR(z) = My*(x). O

Note also that computation of y* is O(d) and can be
solved in closed form for each dimension independently as

(y*(@)); = sign(;). min{ 22 1},

Now we shall see that the approximation can be uniformly
made as sharp as desired by controlling . The trade-off is
between approximation quality and smoothness.

Proposition 2. Vz : |R, () — R(z)| < p.d

Proof. WLOG, suppose A = 1. For other A\, we can scale
v appropriately. Let aNb= Inln{a b}. First, notice that

Ry(w) = 35,155 Afal) = (55 A 4))- So, we have,
. 4. a? 22 p

Buta) = R@) =1 3G = i £0) = (G A D)
d 22 u
s}%wﬁfMMAm+rf 3

The second term is at most £/2. The first term is non-zero
only when %2 —|2;]| is negative. It is a quadratic in x and the
smallest it can be for any x is —u/2. Hence, even the first
term is at most p/2. And there are d dimensions. Putting
these together, we have,

Ry (x) - R(2)| < pd (28)

O

For more complicated loss functions, a combination of both
of these methods can be used, as in (Chen et al., 2012).

4. Theoretical Analysis

In this section, we show that the without any MH-
correction, proximal HMC is ergodic and approximates the
true density under certain conditions.

First, we shall look at ergodicity.

Theorem 1. Let p, the target density be one-dimensional,
and let U = —log p, the potential energy be continuously
differentiable. For some d € [0, 1), define:

d(PI'OXeU/z(H) —0)
lim |6]™

60— —o0

u

ST = lim 6~
60— 00

Sq = (prox y5(0) — 0)

U
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If the step-length, € is sufficiently small, and the number of
leap step are not too large, proximal HMC is ergodic if:

e for some 0 < d <1, both S;r and S} exist; and

e ifd=1then (Sj —1)(1-5;) <1
Proof. In one iteration of prox-HMC, let the initial value
of 6 be 6y, and the next sample be 6, after L leap-frop
steps passing through intermediate values 61, ...0;,_1. Note
that the HMC update is equivalent to §; = 6,1 + €Z —
(€2/2)VU (6y), where Z is a standard normal. By Taylor’s
Theorem, we have,
VU(9;) =VU(0;—1 + VU (B0;_1)(0; — 0;_1) + O(e?)
t

VU (0;) =VU(00) + Y _ VU (Ok) (O — Ox—1) + O(t.€*)

k=1

VU (60) + O(te)

From this,
t—1
0, = 0y + teZ — —VU (60) = > _(t —)e*VU (6)
i=1
t2 2 3 3
=0+ teZ — 7VU(90) O(t € )

Provided Le is small enough, Theorem 3.1 of (Pereyra,
2013) can directly be applied to get the required result.

O

The intuition behind this result as explained in (Pereyra,
2013) is that limg_, 4 ddg (0) = S50 + o(0) where U
is the Moreau envelope (Parikh & Boyd 2014) of U.

Now we shall look at the convergence to the desired sta-
tionary density.

Theorem 2. If p € C? (the set of function with continuous
second derivatives). If L is small, as the step-size ¢ — 0,
prox-HMC converges in mean square to continuous Hamil-
tonian Dynamics with stationary measure p.

Proof. Follows from the previous proof and Theorem 3.2
in (Pereyra, 2013). L]

A caveat on the usefulness of these results are that as-
sumptions are made on the differentiability of the function,
which do not hold for the application area of this algorithm.
Another concern is the restriction that L should not be too
large. Favorable properties of HMC over LMC such as
being able to reach high probability regions far away are
largely due to moderate number of leap steps, L. Hence,
we ought to take these results with a pinch of salt.

5. Experiments

To validate the proposed method for dealing with non-
smooth energy functions, a series of experiments are con-
ducted with both synthetically generated data as well as real
world datasets.

5.1. Sampling in a single dimension

First, we setup a non-smooth, single dimension probabil-
ity distribution from which samples are to be drawn. For
this, we consider P(f) oc exp (—A|f] — 62). The pres-
ence of || makes this distribution non-smooth with a sharp
peak at O (as seen in Figure 1). Samples are considering
by evolving the modified stochastic HMC dynamics as de-
scribed in the previous sections, using the proximal gradi-
ent approach. We compare our approach with the baseline
of a standard HMC implementation both with and with-
out the MH correction step'. We also plot the results from
the Naive Stochastic gradient (without the friction term),
once again both with and without MH step. Figure 1 shows
the empirical distribution of the samples from these algo-
rithms.

1 T T
[——True Distribution
Standard HMC(wuh MH)
09k 4\ |~ Standard HNIC(no MH) J
\ «—Naive stochastic gradient HMC(with MH)
- Nalv%dsmchasuc gradient HMC(no MH)

08
0.7+
06+
05+
041

03} g

05 0
0

Figure 1. Empirical distribution using various sampling algo-
rithms for a non-smooth energy function U(#) = —\|0| — 6°.
All these methods use smoothing approach. Here, A = 1 is used,
smoothing parameter 1 = 1077 is used.

We see that the standard HMC gives close results, even
without the MH step. Clearly, as the theory suggests, Naive
stochastic gradient without MH correction diverges from
the true distribution. Although the Naive Stochastic gra-
dient with MH step seems to approximate the distribution
well, it results in a lot of rejections which is often unde-
sirable. SGHMC, without the costly MH step also results
in a good approximation for the desired distribution. This
validates our proximal gradient approach to deal with non-

!Code courtesy Chen et al. (2014)
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Figure 2. Results for Stochastic HMC with non-smooth energy functions. First row (a, b, ¢): Mean squared error (MSE) for the regression
samples generated. MSE is normalized to MSE of Lasso. Ridge regression results are also plotted in case they are reasonable. The MSE
for the sample converges indicating the convergences of the Markov chain. Second row (d, e, f): Bayesian 95% credible intervals for the
samples. Most of the intervals contain zero which is desirable. Even the lasso estimates are within the intervals. Column-wise results
correspond to synthetic, CPUSmall and Year prediction datasets respectively.

smooth functions for sampling algorithms and SG-HMC,
in particular.

5.2. Regression

We also test our system on the Bayesian Lasso setup which
enforces sparsity through [, regularization that makes the
overall energy non-smooth. Specifically, we aim to obtain
samples for the regression parameters with the /; penalty.
The Lasso implementation of MATLAB is taken as the
baseline for this experiment. We use the Mean Squared
Error (MSE) on the test set as a measure to assess the re-
gression co-efficients. We also consider the ridge regres-
sion implementation of MATLAB for comparison.

The following datasets are used:
1. SYNTHETIC DATASET

We first consider a synthetic dataset {X;,y;}~ ; ob-
tained through the following generative process:

Given X1, Xo,..., X, and 8
vilB~ BT Xi + e
e ~ N(0,0%)

We generate a total of 10000 such data points of di-

mension 300, and use 80% of it as training instances
and the remaining for testing.

CPUSMALL DATASET?

CPUSmall dataset has around 8200 data points of di-
mension 12. Around 80% of it is used as training
while the remaining is split equally into testing and
validation data.

3. YEAR PREDICTION MSD?
It has around 460, 000 data points of dimension 90.
However, the data points are given in two separate files
containing the training and test sets.

We compare the two proposed methods — proximal
gradients and smoothed [;— for dealing with non-
smooth [; penalty. For smoothed [;, try out u €
{107%,10—5,...,10%}, and use the best value for each
dataset (cross-validation). As both the methods were ob-

served to give very identical results (same till two decimal

http://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets/regression/cpusmall

http://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets/regression/
YearPredictionMSD.bz2
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places of MSE), we show only the MSE on testing dataset
for the samples generated through smoothed ;.

ESTIMATING A\

Observe that we have a smoothing parameter A in equation
24. An empirical Bayes estimate is obtained using a dif-
ferent validation data (obtained from testing set) by running
EM algorithm.

E-step: Samples for 8 are generated by running the SG
HMC, using the previous value of .

M-step: The M-step can be computed in closed form, as in
(Park & Casella, 2005):

a4 (29)

e

Here, d is the number of dimensions for the current prob-
lem setting. Since we cannot compute the expectation in
closed form, we use instead the empirical expectation com-
puted from the samples generated in E-step.

FIGURES

Figure 2(a) shows the MSE on testing dataset. Clearly, the
error converges indicating the convergence of the Markov
chain. As a point estimate, we consider the dimension-wise
median for the samples. We observe that this point estimate
performs better than Lasso and ridge regression. To further
investigate the sparsity in the samples, we compute 95%
credible intervals for all the dimensions. The presence of
zero in the credible interval is desirable in the Bayesian
setting. Figure 2(d) shows the credible intervals along with
the median of samples. Clearly, most of the credible inter-
vals contain the zero. The Lasso estimators are also within
these intervals.

On the CPUSmall data set, ridge regression has extremely
poor performance and hence we avoid plotting it. As seen
from Figure 2(b), the samples perform better than Lasso
while the median gives a way better MSE for this particu-
lar dataset. Next, we plot the credible intervals as before in
Figure 2(e). The intervals are 95% Bayesian confidence in-
tervals and contain both zero and the lasso estimates, which
is desirable for sparsity.

Finally, Figure 2(c) shows the MSE plotted for the large
dataset of year prediction. Stochastic HMC results in an
immense speed up compared to full gradient HMC as only
small portion of the dataset is used to estimate gradient at
every step. As before, ridge regression results in a high
MSE (about 6 times compared to Lasso) and is not shown.
The credible intervals for year prediction are plotted in Fig-
ure 2(f) indicating the desired property of containing zero
in the intervals.

6. Conclusion

In this work, we have extended Stochastic HMC to deal
with non-smooth energies by proposing two approaches.
The first approach makes use of the idea of proximal gradi-
ents. We prove some theoretical properties for this. On the
other hand, the second approach deals with non-smooth en-
ergies by smoothing it out. The technique has been demon-
strated for the Bayesian Lasso, but can be applied much
more generally. We show experiments on large synthetic
and real datasets, demonstrating the effectiveness of our
proposed methods.

Open Questions: The absence of an MH-step must mean
that the step length has to be super small. The first straight-
forward extension would be to include an approximate
MH-step based on a subset of the data. The method pro-
posed in (Balan et al., 2013) is slow to the point where it
is not practical and alternatives have to be explored. Fur-
ther, better theoretical results are needed. To distribute this
method, asyncrhonous stochastic gradient methods can be
used with appropriate modification for the prox operator.
We intend to pursue this next as it looks promising.
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