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ABSTRACT

Traffic flow in a city is a rich source of information about the city.
Cities are being instrumented with video cameras. They can poten-
tially generate continuously large datasets to be processed (big data).
This paper reports on our current work to detect traffic flow from an
on-line low quality, low frame rate city video camera. The paper de-
tails a pipeline of four main steps – background subtraction, scene
geometry, car detection, and car counting, and it illustrates results
obtained with processing video from a single camera.

1. INTRODUCTION

The video generated by a low quality city camera (say between one
and two frames per second and 100k pixels/frame) is roughly esti-
mated to be about 1GB to 10GB of data per day. This is continuous
and in “perpetuity.” This paper considers the detection and counting
of cars moving in a segment of a city road monitored by one such
stationary camera. The video is low quality, noisy, with compres-
sion artifacts, and low frame rate. Due to the large depth of view of
the camera, cars can be very small or very large. Figure 1 shows two
consecutive frames. The low frame rate precludes tracking-based de-
tection techniques as observed from Figure 1, where most of the cars
are present only in one of the frames. Depending on the time of the
day, traffic can be light or heavy, and illumination can vary dramat-
ically throughout the day and night or due to very different weather
conditions. We consider a video from an 8 hour span (10:00AM
to 6:00PM), which reduces the range of illumination variations, but
where there are significant shadows that appear and disappear.

The low quality and low frame rate of the cameras makes the
problem significantly difficult, compared to traditional surveillance
task. First, tracking-based approaches fail as detected vehicles are
far apart in the image across successive frames. Second, matching
the cars to avoid over-counting is difficult as their size and orienta-
tion differs vastly over frames.

Brief review of the literature. Background subtraction is
limited by noise, variations in illumination, and shadows. Typical
techniques for background subtraction include: 1) differentiating
from each frame a background reference frame assumed to exist
and with no foreground objects [1]; 2) gradient-based methods [2];
or 3) building background models with Gaussian Mixture Models
(GMM) [3]. In this paper, we adopt a GMM-based method. Ap-
proaches for detecting vehicles include model based methods that
use prior information [4] or deformable templates [5]. There are
two methods for counting moving vehicles: tracking the paths of
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Fig. 1: A pair of sequential frames; one car correspondence is shown
for clarity, smallest seen cars are 10 pixels.

these vehicles [6]; and setting a virtual line and counting vehicles
that pass the line [7, 8]. Because of the large variation in the size of
the cars and the depth of the field of view in the images we consider,
we partition each image into 1+ 4 regions. The first is the near field
of the image. In each of the remaining four, cars are of roughly the
same size and moving in the same direction. To help with this image
partition, we have an initial block that extracts the scene geometry.

Section 2 introduces the background subtraction procedure, Sec-
tion 3 explains the scene geometry, Section 4 and Section 5 detail the
detection and counting blocks, and Section 6 concludes the paper.

2. BACKGROUND SUBTRACTION

The first step in our pipeline is to extract the regions of interest
(ROIs) by subtracting the background from each frame in the video.
We train adaptive background Gaussian Mixture Models (GMM) [9]
to identify foreground pixels and obtain a foreground mask. Noise
is filtered using erosion and subsequent dilation [10] with kernels of
small radius. The refined foreground mask is used as an input for
the scene geometry in Section 3. We then group foreground pix-
els to generate connected regions according to their sizes, moments,
and shape information, and obtain the minimum bounding rectan-
gles (blobs). We filter these blobs with the geometry constraints. In
particular, we filter out cars that are significantly bigger or smaller
than the expected size in the particular point being considered on the
road. We also filter blobs by aspect ratio, which is approximately
height/width = 0.75 in our case. These remaining blobs can aid in
the detection process in Section 4.

In light traffic, when the background to foreground area ratio is
a two-digit value, the background GMM does learn a robust model.
However, during the 5 pm rush hour (figure 2a) the ratio of back-
ground to foreground gets closer to 1, and some parts of the road are
constantly hidden by cars. Therefore, GMM does not learn the true
road (figure 2b). We take advantage of the fact that our cameras are
stationary. We subtract the background image from each frame, re-



Fig. 2: From left to right: a) frame in heavy traffic; b) noisy GMM-generated background; c) reference picture of empty road; d) map of
brightness adjustment; e) resulting clean background.

sulting in a ghost-like appearance of cars (figure 4). Next we explain
how to generate a clean background in all traffic conditions.

Generating a clean background image from a frame is not al-
ways a trivial task. To solve this problem, we use a reference pic-
ture with empty road taken at times of light traffic – for example, at
10 am (figure 2c). We transfer this reference picture of empty road
to other times of the day after brightness and color adjustments (fig-
ure 2d). Weather and time of the day change the illumination of the
road smoothly but non-uniformly. Therefore, color and brightness
adjustments of the reference picture must be non-uniform as well.

First we generate a noisy background image from the GMM (fig-
ure 2b). Pixels too different from the reference picture are consid-
ered as noise and are masked. Then we apply a Gaussian blur with
a large σ = 50 to both the reference picture (figure 2c) and to the
GMM-generated background, in order to average the color in the
neighbourhood of every pixel. The masked pixels do not contribute
to the Gaussian blurring. The difference between the two blurred im-
ages (figure 2d) is then added to the reference picture. The final clean
background image is shown in figure 2e. The goal of generating the
clean background image is to be able to create “ghost images” from
input frames, thus the quality of the background image is evaluated
in terms of how clean the dark parts of the ghost images are. The
mean absolute value of the dark pixels of the ghost image is 2.8± 1
for the method described here. It is much lower than 4.6 ± 1 when
the reference image is used without illumination adjustment and is
close to the level of color noise 1.7± 1.

3. SCENE GEOMETRY

Working with a single, stationary camera provides the luxury to learn
and understand the geometry of the scene. By scene geometry, we
mean the location and extent of the road along with lane structure,
as seen by the camera. The usefulness of such an understanding is
two-fold. First, it provides context for the entire system. As the
camera always sees a fixed stretch of the road, incorporating such
knowledge about the scene will aid car detection and counting, lead-
ing to a more robust system. Second, it gives additional information
about the possible sizes and location of candidate detections that can
be used to reduce false positives (see figure 3a). For example, we
can identify false alarms when the size of a candidate detection is
suspiciously larger than the expected size, given the location of the
detection in the fixed viewpoint. In this paper, we take advantage of
this single camera setting and understand geometry with identifying
the road lanes.

Overview. Identification of the lanes from a single view camera
can be done using two broad approaches−making use of visual cues
like lane markers and dividers that are painted in white or yellow
and standout from the background [11],[12]; and tracking the vehicle

moving along the lanes across various frames [13], [14]1.
These methods place restrictive assumptions or are not feasible

in our current setting. First, depending solely on visual cues for lane
detection forces a need for clear and distinct lane marks, which might
not always be true for the given stretch of road. Because scene ge-
ometry is significant in improving car detection, unclear or no road
marks for the lanes render the system ineffective. Second, low frame
rate of the camera we consider disallows approaches that rely on
tracking moving vehicles to be successful. Additionally, our camera
is uncalibrated. In this paper, we propose a novel approach to de-
tect and identify lanes using the first few frames of the input video
stream, as described next:
1. The pipeline begins with estimation of the vanishing point and

dominant edges of the road. These edges roughly define the ex-
tent of the road, helping us narrow our search for moving cars
within these bounds.

2. With the help of the vanishing point estimates, we generate an
Inverse Perspective Map (top view) of the road using planar ho-
mography, thereby eliminating the perspective effect.

3. We find the candidate pixels that possibly correspond to vehicles
after subtracting the background (see section 2). We then com-
pute the vertical lines in the top view where there is minimum or
no foreground over a few frames, and identify them as the lane
boundaries.
Vanishing point estimation. The primary step in understanding

the scene geometry is to estimate the vanishing point along with the
two outermost dominant edges on either side of the image. It is well
known that perspective projection causes parallel lines, road lanes
in our case, to meet in a point. The dominant edges detected are
likely to correspond to the outermost extents of the road. We use
the vanishing point detector proposed in [15] for this task. The
authors use soft voting, based on local texture features for vanishing
point detection and then go on to estimate the dominant edges by
finding the two lines with maximum texture orientation consensus.
We refer the reader to [15] for further details. Since voting is done
over all the pixels on the image, the estimation of vanishing points
may slightly vary for different frames. We use the first Nv frames to
compute the vanishing point and dominant edges, and then perform
RANSAC [16] to select the best fit. Figure 3b shows the resulting
image after this process.

Top view generation. Using the estimated vanishing point and
dominant edges, we generate a top view of the road through a pla-
nar homography transformation. Working with the top view offers
two significant advantages: i) We can get away with the perspective
effect where the lanes seem to meet at a point. ii) We now have ver-
tical lanes that can be easily identified through known techniques.

1Although [12] and [14] work with a vehicle mounted camera, as opposed
to the surveillance camera in the current problem, they still provide the intu-
ition behind the difference between the two approaches.



Fig. 3: From left, top row: a) Validating detections using scene geometry. Red: Possible false positives−unexpected size or location; Green:
Acceptable car detection as size is within tolerance; b) Estimated vanishing point (green), dominant edges (blue), possible extent of road
(red); c) Top view resulting from homography transformation2, cars mostly lie in their corresponding lanes even though homography causes
distortion, the bleeding into neighboring lane is minimal; From left, bottom row: d) Accumulated foreground over the first Nd frames, notice
the clear minima along the directions; e) Plot after summing foreground map along the columns of (d), minima (green) correspond to lane
boundaries; f) Final result after detecting the lanes.

The latter is true, as we assume that the lanes are parallel or nearly
parallel. It must be noted that homography is valid strictly only for
points on the road plane whereas pixels corresponding to the cars
will get distorted. As the vehicles typically move along the center
of a particular lane, there is minimum ‘leakage’ of foreground into
the neighbouring lanes, justifying its use in our approach. Figure 3c
illustrates this in greater detail.

Road lane detection. The final step is to detect the lanes
using foreground extracted and the homography that generates the
top view of an image. The task is to identify the vertical lines,
i.e., columns in figure 3c, which correspond to lane boundaries.
Since vehicles generally move well within the lane, they contribute
to higher number of foreground pixels at the lane centers creating
local minima near the lane boundaries that we desire to identify
(figure 3d). We apply the homography transformation to the ex-
tracted foreground image. For every vertical line (each column in
figure 3c), we keep track of the total number of foreground pixels
belonging to that line, across the first Nd frames, i.e., we sum up
all the rows to get a histogram of foreground pixels for each vertical
line. Many such histograms, one for each new frame, are added to
obtain the distribution of the foreground pixels for these Nd frames.
We smooth out this accumulated histogram to avoid detecting mul-
tiple minima at the same place, and then find the points of local
minima labeling them as lane boundaries (figure 3f).

4. CAR DETECTION

Choice of detectors. We now consider the car detector. It is desir-
able to detect a bounding box for every visible car in every frame.
The main challenges arise because of heavy traffic, very low frame
rate (around 2 sec. per frame), low image quality, and image com-
pression artifacts. Relatively heavy traffic makes cars block one an-
other in the image limiting applicability of background-based tech-
niques [4]; the low frame rate effectively makes tracking of already
detected cars not feasible, and the low image quality and image com-
pression artifacts add additional noise to the image. Given these lim-
itations, we look for a combination of several different approaches
that produce a satisfactory result in most cases in our application

Given a camera, a detector should be able to find both very small
cars on road segments farther away from the viewer, and big cars,
closer to the viewer. In our videos a human can distinguish a car

Fig. 4: left: original frame fragment with and without subtracted
background (car “ghost”); right: examples of car patches for training
cascade detectors

10-15 pixels wide (figure 1), which is not as small as expected due
to color noise and compression artifacts. At the same time, in the
front of the frame, even small parts of cars become visible. A detec-
tor should also work in both light and heavy traffic conditions. We
found that in very light traffic a detector based on background sub-
traction (like [4]) is capable of finding cars throughout the frame,
while for heavier traffic, a Viola-Jones cascade detector [17] can be
used for the farther away parts of the frame. The Viola-Jones detec-
tor, however, has poorer performance in closer parts of the image.
For these, it is possible to use more complicated approaches like
part-based models [5], but a simple background subtraction based
detector will also perform well since individual cars in the front of
the image and the road between them are usually visible even in
heavy traffic. In the remaining part of the section, we explain how
we build the Viola-Jones cascade detectors, and combine the cascade
detectors with blobs provided in Section 2.

Viola-Jones cascades. We now consider the Viola-Jones cas-
cades of Haar features. The cascades are trained and used with
ghost-like images of cars with subtracted background (figure 4.)
This mitigates the effect of such background features as lane mark-
ings on car appearance and reduces the number of false positive
detections on the background. A clean background is generated at
all times as described in Section 2. Next we explain how we trained
the cascade detectors.

2We avoid pixels close to the vanishing point as they result in huge dis-
tortions due to perspective effects



Fig. 5: Example of combining the two cascade detectors and the
background subtraction based detector

Training the cascade detectors. We collected training data
with blobs obtained in Section 2. Data were collected from sev-
eral cameras at light traffic conditions, when the background detec-
tor accuracy is high. Since the available data is unlimited, we ad-
just parameters for very high accuracy with lower recall in order to
minimize the human input. The remaining false positives are then
manually filtered out. We harvested over 6000 car detections after
processing 5 hours of video from different cameras (figure 4.)

We trained two cascades of Haar features. One cascade model
fires on straight-looking cars, and the other – on cars viewed under
some angle to the camera. Accordingly, we extracted two subsets
of car patches from the available training data. We assigned a mask
to each of the two cascade detectors based on the area of detector’s
applicability.

Combining detectors. At detection time, the two Viola-Jones
models and the background based detector (3 detectors total) each
process the provided frame and return their detections. We threshold
the candidates based on expected size, expected ratio, and proximity
to image boundary, and use standard non-maximum suppression [18]
to generate a final set of detections. Figure 5 presents an example
of detection results in the difficult case of heavy traffic. With the
19 visible cars, there are 17 correct detections along with 3 false
positives. The other 2 cars were not detected.

Failure cases. We trained only two Viola-Jones cascade models,
which cover most cases for this particular camera. The failure cases
for Viola-Jones include trucks and buses, dusk and night conditions,
as well as dense traffic. Some of the vehicles in those cases are
successfully detected by the background based detector, such as the
car in the front of the camera in figure 5. On the other hand, the
background based detector may detect a group of car as a single
vehicle, and it may see two cars in place of a single one in case it
has a large gray front window. Most mis-detections are successfully
filtered out using geometry constraints.

5. CAR COUNTING

The last block of the pipeline counts the number of cars in a given
video sequence based on the cars detected by the detector block.
There are two main challenges – low frame rate and low resolution.
While low frame rate renders the traditional tracking ineffective, lack
of resolution hinders matching using common features [19] [20].
To overcome these challenges, we propose a probabilistic counting
model, including following steps: i) matching cars in the new frame
and in the previous frame to distinguish new cars from seen cars; ii)
counting the new cars in the new frame and adding them to the total
count of cars in the video sequence.

To improve the accuracy of car matching, which is the key
component of the probabilistic counting model, we simultaneously
extract multiple representative features, utilize appropriate distance
measurements, and consider geometry constraints. For the feature
extraction, we combine the HOG features with color histogram. To
measure histogram similarity, we apply the Earth Mover’s Distance
(EMD) [21]. Compared to traditional similarity metrics such as the
χ2 distance, EMD is more robust, being based on several desirable
features including: the support of adaptive binning and support of
partial matches, which make EMD more effective to measure the
similarity in car matching. Regarding geometry constraints, we
pairwisely compute the matching score between two cars based on
geometry information such as lanes, speed, and potential driving
distance. In order to combine the appearance similarity, and geo-
metric constraints, we compute a weighted score based on the color
matching score, HOG matching score and geometry matching score.
A cutting line is adaptively set in frames based on geometry infor-
mation, and cars farther than the cutting line are not considered. The
final result is matches between detected cars in sequential frames
and the total number of cars in a given video sequence. Figure 6
illustrates the matching results for a pair of sequential frames.

Quantitative Evaluation. In the experiments, we evaluate the
proposed algorithm on a manually labelled representative video se-
quence. The ground truth vehicle count is 321. The proposed al-
gorithm counted 275 of them, and detected 16 more false positives.

Fig. 6: Counting results for a pair of sequential frames. Only de-
tected cars below the cutting (dashed) line are counted. In the left
frame, the number of cars is 3; In the right frame, 1 car is matched
with a car in the previous frame. 2 cars are not matched and are de-
noted as new cars, which makes the total of 5 in the pair of frames.

6. CONCLUSION

This paper describes a pipelined system to detect and count cars from
a low quality, low frame rate, stationary city video camera. This is
a challenging problem compounded by the depth of camera, com-
pression artifacts, noise, variations in illumination, low frame rate,
among other limitations. The video we consider spans an eight hour
period of a single day, which limits the range of illumination vari-
ations. We combined two complementary methods for background
subtraction to address different traffic conditions. The solution pre-
sented exploits the scene geometry extracted as explained in Sec-
tion 3 and uses multiple detectors, each addressing a part of image
where car sizes and traffic direction are considered more homoge-
neous. We also presented a traffic counter. The representative results
with real video from a city camera provide accurate identification
and count of cars. In our future work, we will consider night and
day as well as weather variations, and videos from other cameras.
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