
Movie Recommendation based on Collaborative
Topic Modeling

Abhishek Bhowmick
Dept. of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
abhowmi1

Udbhav Prasad
Dept. of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
udbhavp

Satwik Kottur
Dept. of Electrical Engineering

Carnegie Mellon University
Pittsburgh, PA 15213

skottur

Abstract

Traditional collaborative filtering relies on ratings provided by viewers in the
movie-watching community to make recommendations to the user. In this project,
we attempt to combine this approach with probabilistic topic modeling techniques
to make recommendations that consist not only of movies that are popular in the
community, but also those that are similar in content to movies that the user has
enjoyed in the past.

1 Introduction

Recommender systems are an important technology for TV/movie streaming services like Netflix,
HBO, audio/music streaming sites like Spotify, Pandora, news article feeds like Pulse, online retail-
ers such as Amazon, Walmart etc. Indeed, any service provider or content management system that
has large quantities of information (or the ability to extract such information) such as usage patterns,
browsing and click history, natural text descriptions etc can and should make use of recommendation
methods to help find items of interest. Among various information sources, data in the form of natu-
ral text is a particularly rich and expressive source of information, however it is highly unstructured
in general. Topic models are used to extract latent structures from large volumes of unlabeled text,
that can be used for analysis of content and in turn, aid end goals such as making recommendations.
In particular, textual information such as movie plot summaries can be very helpful to improve the
prediction performance of traditional collaborative filtering. In the remaining part of this report, we
limit ourselves to the study of how topic modeling of large text corpora can help in the task of movie
recommendation, however most of the discussion/analysis can be applied to other domains.

1.1 Collaborative Filtering and its shortcoming

Traditional collaborative filtering makes use of interactions between users and items. They may
be broadly classified into two categories - neighbourhood methods and latent factor models. Neigh-
bourhood models explicitly capture relationships between items (or users) and predict a user’s liking
for a particular item based on ratings of neighbouring items by the same user. The other approach,
latent factor models, directly characterize both users and items by latent factors. We focus on factor
based models as they are more accurate than neighbourhood based methods. However, all collabo-
rative filtering methods suffer from the ‘cold start’ problem, that is, they are unable to recommend
movies in the absence of rating patterns. In fact, in the domain of music, it has been observed [1] that
the distribution of available rating information for music artists has a very long tail, which means
that most of the music items have little rating data available. We believe the same is true of movies
as well and hence, would like to be able to recommend movies that are in this long tail.

1

1.2 Content Based Recommendation

Content-based recommendation addresses the ‘cold start’ problem associated with collaborative fil-
tering, where certain items do not have any rating information and hence the corresponding item
vectors consist of all zeroes (we use zeroes to represent missing ratings in the rating matrix). One
approach is to use topic modeling of plot summaries to identify latent themes/topics. We can learn
topic representations for each item (a vector of topic proportions) and add them to the item vectors
in the latent-factor model. Such topic representations of movie items are also useful outside the do-
main of movie recommendation. Interpretability of topics may help in explaining recommendations
to users, effective content programming and ad targeting based on user profiles [2].

2 Problem Definition

Briefly, the problem we are trying to solve is predict how highly a user will rate certain movies
based on all users’ rating histories and plot summaries for all movies. Making use of these predicted
ratings, we come up with movie recommendations for a user. The problem can be formalized as
follows [3] :

We are given a list of users U = {u1, u2...um} and a list of items V = {v1, v2...vn}, where each user
ui has a list of items Iui

which he/she has given ratings for. For a given user ua ∈ U, we need to
solve the following two tasks:

Prediction: Estimate the predicted rating Paj of an item vj /∈ Vua
. The prediction task can be

further split into two types: in-matrix prediciton and out-of-matrix prediction. In-matrix predic-
tion is the problem of predicting ratings for items that have already been rated by atleast twenty
other users, whereas out-of-matrix prediction makes predictions about those items that have very
few or no ratings (less than 20).
Recommendation: Return a list of N items Ir ∈ I & Ir ∩ Ia = φ, that the user will like most.
This is simply a problem of returning the items with highest predicted rating values.

Specifically, we are interested in observing how incorporation of item topic representations increases
the prediction accuracy of factor models. We would also like to analyze the interpretability of the
latent topics that are captured by the topic model, however this will be just be a qualitative analysis.

3 Proposed Method

We use Probabilistic Matrix Factorization (PMF) for collaborative filtering on movie ratings and
Latent Dirichlet Allocation (LDA) for topic modeling of the corpus of movie plot summaries. We
then combine the latent factor model learned through PMF and the topic model learned through
LDA into a single collaborative topic regression model (CTR). A CTR model essentially uses the
latent topic space (latent variables) to explain observed ratings and observed documents (observed
variables), thus incorporating content information into a collaborative filtering framework [4].

3.1 Probabilistic Matrix Factorization

One of the most popular methods approaches to collaborative filtering is based on low-dimensional
factor models. The idea behind such models is that the preferences of a user are based on a small
number of unobserved factors. For example, if there are N users and M movies, the N × M
preference matrix R is given by the product of an N ×D user coefficient matrix UT and a D ×M
factor matrix V . Training such a model amounts to finding the best rank-D approximation of the
observed N ×M target matrix R under a given loss function.

We adopt a probabilistic linear model with Gaussian observation noise. The graphical model is
shown in figure 1. We define the conditional probability distribution over the observed ratings as

p(R | U, V) =

N∏
i=1

M∏
j=1

[N (Rij | UTi Vj , σ2)]Iij (1)

2

Figure 1: Graphical model for Probabilistic Matrix Factorization

whereN (x | µ, σ2) is the probability density function of the Gaussian distribution with mean µ and
variance σ2, and Iij is the indicator function that is equal to 1 if the user i rated movie j, and is 0
otherwise. We also place zero-mean spherical Gaussian priors on movie and user feature vectors:

p(U | σ2
U) =

N∏
i=1

N (Ui | 0, σ2
UI) (2)

p(V | σ2
V) =

M∏
j=1

N (Ui | 0, σ2
V I) (3)

Maximizing the log-posterior over movie and user feature vectors with hyper-parameters (the obser-
vation noise variances and prior variances) kept fixed is equivalent to minimizing the sum-of-squared
errors objective function with quadratic regularization terms.

E =
1

2

N∑
i=1

M∑
j=1

Iij(Rij − UTi Vj)2 +
λU
2
||Ui||2 +

λ

2
||Vj ||2 (4)

where λU = σ2/σ2
U and λV = σ2/σ2

V . A local minimum of the objective function can be found
using gradient descent in U and V .

3.1.1 Gradient descent

Since we have more than 10 million ratings, we use stochastic gradient descent as our learning
algorithm. For each given training case, the algorithm predicts Rij and computes the associated
prediction error:

eij = Rij − UTi Vj (5)

It then modifies the model parameters by a magnitude proportional to γ (the “learning rate”) in the
opposite direction of the gradient, yielding

Ui ← Ui + γ(eijVj − λUUi) (6)

Vj ← Vj + γ(eijUi − λV Vj) (7)

Additionally, instead of taking each rating one by one, we took them in chunks of 100 ratings at
a time, and calculated the updates over all those 100 ratings. This made the algorithm faster, and
also made the updates more stable, and immune to any outlier gradient values. Convergence check
was done by taking the average over a fixed number of gradients from previous iterations. If the
average was smaller than a particular threshold, we considered the algorithm to have converged.
The algorithm generally converged in less than 3 iterations over all the ratings. The learning rate
was chosen to be an function that decayed with the number of iterations. In particular, the learning
rate was formulated as :

γ = (τ + i)−κ (8)

3

where τ is for normalizing, κ is the “forgetting” rate, and i is the iteration number.

3.2 Latent Dirichlet Allocation

For a collection of text documents, a topic modeling algorithm extracts a set of topics, where each
topic is a distribution over words that occur in the documents. Words belonging to a topic are
biased around a single theme. The topic model that we use for representation of documents is Latent
Dirichlet Allocation (LDA), which is a generative probabilistic graphical model for collections of
discrete data [5]. Each document is modeled as a finite mixture over a set of underlying topics.

LDA has the underlying assumptions that the words in a document and documents in a corpus are
exchangeable - i.e., the specific ordering of words and documents can be neglected. De Finetti’s
representation theorem states that a collection of infinitely exhangeable random variables are condi-
tionally independent and identically distributed, if they are conditioned on a random parameter that
is drawn from some probability distribution. Now, the generative process of the LDA model is:

initialize vocabulary from corpus, the size of which is V;
for each of the K topics k do

Choose βk,1:V ∼ Exhangeable Dirichlet(η) // Draw topic distributions;
end
for each of the M documents w in corpus D do

Choose θ ∼ Dirichlet(α);
for each of the N words wn in document w do

Choose a topic zn ∼Multinomial(θ);
Choose word wn from p(wn|zn, βzn), a multinomial probability conditioned on topic zn

end
end

Algorithm 1: Generative process for LDA

(a) True posterior distribution (b) Variational posterior distribution

Figure 2: Graphical models of LDA, before and after variational approximation

Figure 2a shows the graphical model representation of LDA, which is a three-level hierarchical
model. We assume that the number of topic vectors k is fixed and the vocabulary size of the corpus
to be modeled is V. The word probabilities are parametrized by a k X V random matrix β, each
row of which represents the distribution of topics over words in the vocabulary. Each row of β is
independently drawn from an exchangeable Dirichlet distribution with parameter η. Also, α is a k-
dimensional vector which is a parameter for the Dirichlet random variable θ. Given the parameters α
and β (which itself is a random matrix parametrized by η), the joint distribution of the topic mixture
θ, the set of N topics z and the set of N words w is:

p(θ,w, z|α, β) = p(θ|α)
N∏
n=1

p(zn|θ)p(wn|zn, β) (9)

4

We make use of the representation theorem which states that the set of topics z are independent
conditioned on θ which is a random parameter of a multinomial distribution. Next, we describe two
important tasks for LDA, namely inference and estimation:

Inference: The inference task is to compute the posterior distribution of the hidden variables
given the observed variable w (the document), assuming we know the parameters α and β. (Note
that we treat β as a fixed parameter for the following discussion)

p(θ, z|w, α, β) = p(θ, z,w|α, β)
p(w|α, β)

(10)

Computing this distribution is intractable and hence we use variational approximate inference, as
described by Blei et al. [5]. Simple modifications to the LDA graphical model such as dropping
edges between θ, z and w and adding variational parameters lead us to the variational model in
Figure 2b, which has the following variational distribution:

q(θ, z|γ, φ) = q(θ|γ)
N∏
n=1

q(zn|φn) (11)

The optimal values of the variational parameters (γ∗, φ∗) are obtained by minimizing the
Kullback-Leibler (KL) divergence between the variational and true posterior distribution. By
placing a Dirichlet prior on β, we get a separable variational distribution, which yields the same
expressions for γ∗, φ∗ and introduces a new variational parameter λ which has a similar expres-
sion as γ.
Estimation: We wish to find parameters α and η that maximize the log-likelihood of observed
data, however computing the likelihood is intractable. So, we use a variational EM procedure
in which we alternatingly maximize a lower bound on the log-likelihood of data with respect
to variational parameters γ, φ and λ. This is the E-step. We then maximize this lower bound
with respect to the parameters α and η, which comprises the M-step. The updates for both the
parameters α and η are obtained using an efficient Newton-Raphson method in which the Hessian
is inverted in linear time.

3.3 Collaborative Topic Regression

The Collaborative Topic Regression (CTR) model combines a topic model such as LDA with tradi-
tional collaborative filtering [4]. This is done by combining both the latent topic vector and observed
ratings to describe the item latent vector in the factor model of Section 3.1. The graphical model
and generative process of CTR are given below:

Parameter Estimation: First, we train our LDA implementation on a separate training corpus
and learn the model parameters α and β. Now, the log likelihood of the data is given by:

L =
−λu
2

∑
i

uTi ui −
λv
2

∑
j

(vj − θj)T (vj − θj)+

∑
j

∑
n

log(
∑
k

θjkβk,wjn)−
∑
i,j

1

2σ2
(rij − uTi vj)2

Computing the full posterior of ui, vj and θj given parameter β is intractable. Our approach is to
maximize the likelihood function by co-ordinate ascent, iteratively optimizing the collaborative
filterings ui, vj and topic proportions θj . Given topic estimate θj , setting the gradient of the
log likelihood with respect to ui and vj equal to zero gives us closed form update rules for the
collaborative filtering variables. Similarly, in the next phase, we can optimize the topic estimate
θj given ui and vj . However, similar to the approach taken by Blei et al. [4], we simply set θj
equal to the topic estimate obtained from our LDA implementation, to save computation time
without significant performance loss.1

1We use the movies for which we have both ratings and plot summaries to learn the optimal parameters
u∗
i=1:I , v∗j=1:J , θ∗1:J , β∗.

5

for each user i do
Draw user latent vector ui ∼
N (0, σ2λ−1

u IK);
end
for each item j do

Draw topic proportions θj ∼ Dirichlet(α);
Draw item latent offset εj ∼N (0, σ2λ−1

v IK);
Set item latent vector as vj = εj + θj ;
for each word wjn do

Draw a topic assignment zjn ∼Mult(θ);
Draw word wjn ∼Multinomial(βzjn);

end
end
for each user-item pair (i,j) do

Draw the rating rij ∼ N (uTi vj , σ
2I);

end

(a) Generative process (b) Graphical model

Figure 3: Generative process and model of CTR

Prediction : We then use the learned parameters for prediction of movie ratings. For in-matrix
prediction, we use the following approximation:

r∗ij ≈ (u∗i)
T (θ∗j + ε∗j) = (u∗i)

T v∗j (12)

For, out-of-matrix prediction, where the movie has no ratings available, we use the following
approximation:

r∗ij ≈ (u∗i)
T (θ∗j) (13)

4 Experiments

We present the results of our evaluations and analysis in this section. We denote the plain collabora-
tive filtering model as CF (vj = εj), the collaborative topic regression model as CTR (vj = εj + θj)
and the prediction model with just topic estimates as CTR-LDA (vj = θj), where vj , εj and θj are
the latent vector, ratings vector and topic estimate vector respectively for item j.

4.1 Dataset

For Collaborative Filtering, we use the MovieLens 10M dataset 2, which is a collection of 10 million
movie ratings on 10,000 movies by 72,000 users. The dataset has been pre-processed so that each
user has rated at least 20 movies. This makes the rating matrix very sparse (98.6% sparse). The data
is very well structured and fits into memory. The range of the rating values is 1 - 5, in steps of 0.5.

We use the CMU Movie Summary Corpus3 for generative topic modeling of the movie summaries.
This corpus has plot summaries for 42,306 movies and associated metadata such as genre, year of
release, cast etc. Each movie is indexed by a Wikipedia Movie ID. We use only the plot summary
text and none of the other metadata.

The datasets are used in the following manner: we first find the set of movies for which we have
both plot summaries and user ratings - this common subset has approximately 5000 movies in total.
Out of these, we choose 4400 movies and collect their ratings, 80% of which we use for training
our CTR and CTR-LDA models and 20% for in-matrix prediction test. We use the remaining 600
movies from the common subset for out-matrix testing of CTR and CTR-LDA. We separately train
the topic model using nearly 37,000 movie summaries for which we do not have any user ratings.

2http://grouplens.org/datasets/movielens/
3http://www.ark.cs.cmu.edu/personas/

6

Since the movie summaries are in the form of natural text, some preprocessing steps were necessary
- namely tokenizing, upper-case to lower-case conversion, punctuation and stop-word removal and
stemming. We used the python NLTK toolkit [6] for this. We extracted all words from the processed
summaries and built our vocabulary after sorting them lexicographically. Each document was then
represented as a vector of integers, each integer being an index into the vocabulary. For ease of com-
bining the summary and rating datasets, we created a map from the Wikipedia IDs to the Movielens
IDs (by linking movie IDs that have the same movie names).

4.2 Evaluation of LDA implementation

Interpretability of latent topics discovered by a topic model can be evaluated using two human
evaluation tasks namely, word intrusion and topic intrusion, proposed by Chang, Blei et al [7].
These tasks evaluate the quality of topics inferred by the model and the assignment of topics to
documents. We briefly describe these tests and evaluate our LDA using similar notions below:

4.2.1 Word Intrusion

This test measures whether the topics inferred by the topic model correspond to natural interpreta-
tions and contain words that are semantically close. An ‘intruder’ is defined as a word that doesn’t
belong with the the others in a group. The original task proposed in [7] consists of building a set of
words from a randomly chosen topic and injecting an ‘intruder’from some other topic. This set is
then presented to a human subject to see if the ‘intruder’ word is correctly identified by the subject.
For our evaluation, we just observe the proportion of ‘intruder’ words per topic. In the following
table, we list out some of the topics from our 15-topic LDA (each topic is color-coded).

Topic Terms after stemming Intruders
1 film, movi, stori, play, show, perform, charact, scene, music,

star, follow,includ, peopl, around, end, song, first, band, act,
role

follow, around, end,
includ, first

2 polic, kill, murder, offic, prison, arrestm investig, man, gang,
case, death, crime, one, drug, shoot, killer, crimin, detect, escap,
suspect

offic, one, man

3 war, american, forc, state, soldier, armi, unit, order, offic, ger-
man, govern, british, world, command, general, men, captain,
group, agent, militari

men

4 tell, go, ask, see, say, leav, back, day, get, call, goe, come, home,
next, want, find, night, one, know, time

tell, go, ask ...

5 use, ship, destroy, island, human, earth, crew, attack, discov,
world, control, escap, power, one, alien, monster, caus, find,
time, rescu

use, one, caus, find

6 king, power, kill, find, use, one, evil, return, take, villag, save,
princ, magic, howev, queen, order, fight, name, world, death

find, use, one, take,
howev

Table 1: Topics identified by LDA and ‘intruders’ per topic

We see that our LDA is able to identify important movie ‘themes’ such as theatre/drama (topic 1),
crime/violence (topic 2), war movies (topic 3), adventure/fiction (topic 5), history/drama (topic 6).
These topics have a few number of ‘intruders’ (3 per topic on average). However, there are certain
topics like topic 4, that are too general to be useful, such topics have a large number of ‘intruders’.

4.2.2 Topic Intrusion

The topic intrusion test measures how well a topic model assigns topics to documents. Similar to
the word intrusion test, the topic intrusion test consists of building a set of topics that are assigned to
a particular document along with an ‘intruder’ topic. This set of topics is presented along with the
document to a human subject to see if the ‘intruder’ topic is correctly identified by the subject. For
our evaluation, we present a sample processed movie plot summary and highlight the topic mixture
of this document by coloring the words that belong to the topics assigned by LDA.

7

film courage struck reckless freewheel arthur show round table symbol life service brotherhood
guinevere subsequent kidnap malagant men shoot crossbow battle malagant soldier citizen ensure

lancelot malagant face disarm lancelot seize arthur bodies float sea set aflame

Figure 4: Topic distribution for summary of ‘First Knight’ (1995)

We see that the summary for the movie ‘First Knight’ contains a large proportion of words belong-
ing to topic 6 - history/drama(brown). The other significant topics contained in this are topic 2 -
crime/violence (green) and topic 3 - war movies (cyan). We thus see that our LDA correctly identi-
fies the topics in the plot summary of ‘First Knight’, a historical period war drama based on the life
of King Arthur.

4.2.3 Visualization of movie corpus

LDA provides feature vectors for movie plot summaries in the form of topic proportions, and models
the latent structure in the items belonging to the corpus. We try to identify this latent structure by
visualizing the corpus using t-SNE, a dimensionality reduction tool that is used for the visualization
of high dimensional datasets [8].

(a) 2D plot of feature representations of movies (b) Indian movies are clustered together

(c) Movies similar in content spaced together

Figure 5: t-SNE visualizations

Figure 5a is a plot of the feature representations of the movies when mapped to 2D using t-SNE.
Colors indicate the genres of the movies. From the plot, we can observe that similar genres (colors)
aren’t necessarily clustered together, implying that there is no on-to-one mapping from the topic
representation of a movie to its genre. However, we do observe some structure inferred from the
corpus of plot summaries. For instance, all Indian movies are clustered in the boxed region of Figure
5a, a close-up view of this region is shown in Figure 5b. Similarly, movies that have the same color
(genre) and are clustered together usually tend to have very similar content. For instance, as seen in

8

Figure 5c, the movies ‘Coney Island’, ‘Burning Season’ and ‘Unprecedented: The 2000 Presidential
Elections’ all have the same color (orange) and are placed close by, indicating that they should have
similar content. A study of their plot summaries indicates that these are all documentaries based on
various issues in America. Similar observations are recorded in other parts of the graph as well.

4.3 Prediction of Ratings

Topics Train Error Test Error
CF CTR-

LDA-in
CTR-in CTR-out CF CTR-

LDA-in
CTR-in CTR-out

15 0.915 0.912 0.912 0.912 1.140 1.370 1.029 1.167

25 0.915 0.913 0.913 0.912 1.140 1.303 1.039 1.136

40 0.914 0.914 0.913 0.913 1.138 1.271 1.052 1.148

Table 2: Train and test error of different models for different number of latent topics

Table 2 lists the train and test errors of the different models as we vary the number of topics in
our topic model. On average, for any number of topics, we observe that in-matrix prediction of the
CTR model does better than the CF model. This is expected as the CTR model incorporates content
analysis along with rating information, whereas the CF model relies on user rating data alone. We
get a reduction of nearly 9.7% in prediction rating RMSE test error, when the number of topics is 15.
As the number of topics increases, we find that the test RMSE error of CTR-in slightly increases,
hence we fix the final number of topics to 15 for CTR for further evaluations. Also, we evaluate the
out-of-matrix prediction of CTR by removing certain ratings from the rating matrix, remembering
them as true ratings, computing the predicted rating values using CTR and comparing them against
the true values. We observe that CTR is able to perform out-of-matrix prediction with almost as
good accuracy as that of CF in-matrix predictions (note that out-of-matrix prediction is a feature of
CTR that CF does not possess). CTR-LDA-in gives poorer prediction than CF, implying that just
content-based prediction performs worse than ratings-based predictions (we do not list the values
for CTR-LDA-out as it performs nearly the same as CTR-LDA-in).

Figure 6 plots the performance of the various models as a function of λv , which is a collabrative
filtering variable in CTR. In the above plots, the blue curve is the train error while the green curve
represents the test error. λv acts as the regularization parameter for the item latent factor vector, we
see that as λv increases, we avoid over-fitting and our train error goes up, while the test error goes
down. The optimal value of λv is , ...

4.4 Recommendation

We have done a qualitative analysis of the movies recommended by the Collaborative Filter model.
We calculated the user biases and overall average rating. We used the sum of the two values as the
threshold for deciding which movies the user ‘liked’. Some of the genres of the movies that came
up after filtering with the threshold were:
horror sci-fi, drama thriller, drama horror, action drama scifi thriller, action, adventure scifi, comedy
romance drama

Each item in the above list represents the mixture of genres for individual movies.

And some of the recommendations that the Collaborative Filtering model came up with were:

adventure, drama mystery crime, action thriller adventure, animation children fantasy musical

We can see from these recommended genres that although Collaborative Filtering makes relevant
recommendations, it does not seem to be able to recommend movies of widely different genres.
For example, in this case, although the user seemed to like comedy, romance and drama movies,
Collaborative Filtering did not seem to be recommending these kinds of movies. We found this to
be a general pattern in the recommendations made by Collaborative Filtering.

9

(a) CF model (b) LDA-in model

(c) CTR-in model (d) CTR-out model

Figure 6: RMSE Train and Test errors for CF, CTR-LDA-in, CTR-in-matrix, CTR-out-matrix mod-
els

On the other hand, Collaborative Topic Regression did not seem to suffer from this problem. One of
the examples we found was in a case where the user ”liked” a set of movies of these genres:

comedy drama romance, comedy drama, drama romance, drama, action thriller, action adventure
mystery thriller, comedy, action adventure romance thriller, action drama thriller

and the genres suggested by CTR were:

drama romance, comedy drama, comedy drama romance, drama, comedy, action adventure thriller,
comedy romance, action adventure comedy romance thriller

We can see that CTR came up with a movie suggestion that combined the ”likes” of the user. The
user ”liked” separate action/adventure/thriller and comedy/romance movies and CTR could come
up with a suggestion of a movie which combined all these genres.

5 Conclusions

We used a Collaborative Topic Regression model, which combines topic modeling with traditional
collaborative filtering, to recommend movies based on both item content and user ratings from the
community. We implement our own version of Latent Dirichlet Allocation for topic modeling of
the corpus of movie summaries and combine . We see that the CTR model usually gives better
predicted ratings than the CF model. We also observed that the CTR model more realistically cap-
tures the likings of a user and makes a wider variety of recommendations, as opposed to CF, whose
recommendations don’t seem to span a wide variety of genres.

10

References

[1] O. Celma, “Music recommendation and recovery in the long tail,” PhD thesis, Universitat Pom-
peu Fabra, Barcelona, 2008.

[2] D. Agarwal and B.-C. Chen, “flda: matrix factorization through latent dirichlet allocation,” in
Proceedings of the third ACM international conference on Web search and data mining, pp. 91–
100, ACM, 2010.

[3] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collaborative filtering recommen-
dation algorithms,” in Proceedings of the 10th international conference on World Wide Web,
pp. 285–295, ACM, 2001.

[4] C. Wang and D. M. Blei, “Collaborative topic modeling for recommending scientific articles,”
in Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery
and data mining, pp. 448–456, ACM, 2011.

[5] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” the Journal of machine
Learning research, vol. 3, pp. 993–1022, 2003.

[6] “Python Natural Language Toolkit.” http://www.nltk.org/.
[7] J. Chang, S. Gerrish, C. Wang, J. L. Boyd-graber, and D. M. Blei, “Reading tea leaves: How

humans interpret topic models,” in Advances in neural information processing systems, pp. 288–
296, 2009.

[8] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of Machine Learning
Research, vol. 9, no. 2579-2605, p. 85, 2008.

11

http://www.nltk.org/

	Introduction
	Collaborative Filtering and its shortcoming
	Content Based Recommendation

	Problem Definition
	Proposed Method
	Probabilistic Matrix Factorization
	Gradient descent

	Latent Dirichlet Allocation
	Collaborative Topic Regression

	Experiments
	Dataset
	Evaluation of LDA implementation
	Word Intrusion
	Topic Intrusion
	Visualization of movie corpus

	Prediction of Ratings
	Recommendation

	Conclusions

